Aspiration Level Methods in Interactive Multi-objective Programming and Their Engineering Applications (Abstract of Invited Talk)

نویسنده

  • Hirotaka Nakayama
چکیده

One of the most important tasks in multi-objective optimization is "trade-off analysis" which aims to make the total balance among objective functions. The trade-off relation among alternatives can be shown as Pareto frontier. In cases with two or three objective functions, the set of Pareto optimal solutions in the objective function space (i.e., Pareto frontier) can be depicted relatively easily. Seeing Pareto frontiers, we can grasp the trade-off relation among objectives totally. Therefore, it would be the best way to depict Pareto frontiers in cases with two or three objectives. (It might be difficult to read the trade-off relation among objectives with three dimension, though). In cases with more than three objectives, however, it is impossible to depict Pareto frontier. There are some cases with a large number (e.g., a few hundreds) of objective functions in engineering applications such as erection management of cable stayed bridges and optical lens design. Under this circumstance, interactive methods can help decision makers (DMs) to make local trade-off analysis through interaction of DMs and computers by showing a Pareto solution nearest to their desire. Along this line, aspiration level methods were developed, and have been observed to be effective in many practical problems in various fields. Satisficing Trade-off Method proposed by the author is one of aspiration level methods, and has several devices for making trade-off analysis easily, i.e., automatic trade-off and exact trade-off. This paper discusses those methods for multi-objective optimization, in particular, from a viewpoint of engineering application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An interactive weighted fuzzy goal programming technique to solve multi-objective reliability optimization problem

This paper presents an application of interactive fuzzy goal programming to the nonlinear multi-objective reliability optimization problem considering system reliability and cost of the system as objective functions. As the decision maker always have an intention to produce highly reliable system with minimum cost, therefore, we introduce the interactive method to design a high productivity sys...

متن کامل

An Interactive Possibilistic Programming Approach to Designing a 3PL Supply Chain Network Under Uncertainty

The design of closed-loop supply chain networks has attracted increasing attention in recent decades with environmental concerns and commercial factors. Due to the rapid growth of knowledge and technology, the complexity of the supply chain operations is increasing daily and organizations are faced with numerous challenges and risks in their management. Most organizations with limited resources...

متن کامل

A Fuzzy Goal Programming Model for Efficient Portfolio Selection.

This paper considers a multi-objective portfolio selection problem imposed by gaining of portfolio, divided yield and risk control in an ambiguous investment environment, in which the return and risk are characterized by probabilistic numbers. Based on the theory of possibility, a new multi-objective portfolio optimization model with gaining of portfolio, divided yield and risk control is propo...

متن کامل

FGP approach to multi objective quadratic fractional programming problem

Multi objective quadratic fractional programming (MOQFP) problem involves optimization of several objective functions in the form of a ratio of numerator and denominator functions which involve both contains linear and quadratic forms with the assumption that the set of feasible solutions is a convex polyhedral with a nite number of extreme points and the denominator part of each of the objecti...

متن کامل

A hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty

The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location–allocation problem, which more cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006